Introduction

- The Blue Hill Meteorological Observatory is located 10 south of Boston, Massachusetts.
- Built in 1885 by Abbott Lawrence Rotch.
- It is the longest continuously operating meteorological observatory in the western hemisphere.
- The observatory was operated through Harvard University and served as an early home of the American Meteorological Society.
- Meteorological observations and educational programs are now coordinated by the non-profit Blue Hill Observatory Science Center.

Methods and Data

- The observatory's original hand-written record books containing first-hand daily observations were digitally photographed and archived.
- The daily sunshine records (45290 daily instances) were digitized by hand.
- Attempts at optical character recognition (OCR) of the script pencil records were not successful, but advances in OCR technology may permit additional types of ancillary records (e.g., detailed cloud records or hourly temperature data) to be analyzed.
- These measurements of daily sunshine represent the earliest and longest continuous instrumental measurement of solar insolation outside of Western Europe.
- Daily sunshine durations and frequencies of sunny and cloudy days where statistically analyzed to assess for patterns associated with changing climate and natural cycles.

Pattern analyses

- Autocorrelation, cross-correlation, fourier transforms, and wavelet analyses where used to evaluate potential relationships between sunshine amount and other natural and anthropogenic climate signals.
- Potential linkages were assessed between observed sunshine and natural cycles of the El-Nino Southern Oscillation, North Atlantic Oscillation, Arctic Oscillation, sun spot number, and galactic cosmic ray incidence. Other connections where evaluated with respect to economic activity and industrialization, regional air quality, incidence of contrail-induced cirrus, and episodes of major volcanic episodes.

Conclusions

- The long and continuous record of daily sunshine enables testing of climatic/sunshine relationships that can not be evaluated with most records. The large number of independent observations allows for statistically significant testing of even weak associations.
- The record clearly reveals the impact of large volcanic eruptions in reducing surface radiation. Long term trends in sun fraction and sunny days also appear to be significantly related to changes in regional air quality and contrail-induced cirrus.
- The 11 year solar cycle is clearly apparent in the sunshine data through multiple types of analysis. The effect appears more likely to be modulated through cloud coverage rather than direct impact of the cycle on radiant flux density. Determination of the mechanism for this effect may have significant climatic implications.
- These analyses are by no means exhaustive -- great potential remains for further research and use of this dataset. The full data set is now freely available at www.bluehill.org.